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An atom having anisotropie thermal motion may be represented in the structure-factor calculation 
by two or four isotropic fractional atoms, placed symmetrically about the atom centre and at small 
distances from it. By this procedure it is possible to calculate the contributions of anisotropically 
vibrating atoms to the structure factors in the same way as for isotropic atoms without the necessity 
of introducing new constants for a fictitious distorted lattice. The justification and accuracy of this 
approximation in the range of observed intensities are discussed, and an estimate is given for the 
separation between these isotropic fractional atoms. The agreement between this method and the 
correct representation of the anisotropic thermal motion for practical cases is shown to be extremely 
high. 

Introduction 

Ear ly  in  the course of ref inement  of structures, 
different anisotropic the rmal  parameters  for some of 
the atoms often are clearly indicated in the Fourier  
maps  and  one is confronted with the problem of 
whether  and  how to allow for these effects in fur ther  
refinement.  In  structures containing a few heavy  
atoms among a larger number  of l ighter atoms, the 
in tens i ty  dis t r ibut ion of the small-angle reflections is 
dominated  by  the scattering from the heavier  atoms. 
The accuracy with which the positions of the l ight  
atoms can be determined depends to a great extent  on 
the correct es t imat ion of the phases and ampli tudes  
of the contributions from the heavy  atoms to the  
large-angle reflections. If  these heavy  atoms have 
marked  anisotropic the rmal  motions, then  good repre- 
sentat ion of these anisotropies in the assumed struc- 
ture model  becomes an impor tan t  factor in the ac- 
curate de terminat ion  of the positions of the l ight  
atoms. For example,  during the ref inement  of codeine 
hydrobromide  d ihydra te  which contains one bromine 
a tom and 24 l ight  atoms (excluding hydrogens) in the 
asymmetr ic  uni t  cell, the  assignment  of anisotropie 
the rmal  parameters  to the  bromine atom alone im- 
proved the discrepancy factor from 19% to 14% for 
the whole structure in one cycle of ref inement ;  this  
corresponds to a reduction from 40% to 26% consider- 
ing the contributions of the l ight  atoms only. Al though 
thi~ ref inement  w ~  for ~ centrosymmetr ic  projection 
it  is to be expected tha t  the effect would be even more 
pronounced for da ta  of non-centrosymmetr ic  struc- 
tures where phases also would be appreciably  affected. 

The methods which have been described for estimat- 
ing the effect of anisotropy of an atom on its scattering 
contr ibut ion to any  reflection require a different dis- 
torted latt ice for the temperature-factor  calculation of 
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each anisotropically v ibra t ing  a tom as well as the un- 
distorted latt ice for scattering factors, and  this is of 
a definite d isadvantage in mechanized calculations on 
medium-size computers. The method described in this  
paper  has the advantage  of allowing for the anisotropic 
thermal  v ibra t ion of some of the  atoms, to a good 
degree of approximat ion  wi thin  the practical  range of 
observation, without  the necessity of changing the 
logic of machine  programs designed for isotropic atoms 
only. This is achieved by  replacing an anisotropic 
a tom by  two or four isotropic fract ional  atoms. When  
only a few atoms in the structure are to be assigned 
anisotropic the rmal  parameters  this procedure usual ly  
results in increasing the total  number  of atoms in- 
eluded in the structure-factor calculation b y  only a 
small  fraction of the original number .  However, for 
those structures in which a large percentage of the  
atoms have to be assigned anisotropic the rmal  para- 
meters i t  m a y  be bet ter  to employ a structure-factor 
program tha t  allows for the anisotropic thermal  mot ion 
in the usual  way. 

Principle  of method  

Cochran (1954) has shown tha t  the surfaces of constant  
scattering factor round an atom which has anisotropic 
the rmal  vibrat ion are ellipsoids specified by  the distri- 
but ion 

f(~, v, ~) =f0(s) exp [ -2~2{~u~+ 2 uy+ $~u~}], (1) 

where re(S) is the scattering of the  atom at  rest, 
2 2 2 ux, uy, uz are its mean-square  displacements  along the  

principal  directions of v ibra t ion (which m a y  not  
coincide with the crystal lographic axes), (x, y, z) and 
(~, U, ~) are the rectangular  components of the vectors 
r in real space, and S in reciprocal space, respectively. 
The magni tude  of S is 2 sin 0/2, and  the components 
(Bx, B~, Bz) of the tempera ture  factors along those 
principal  directions are given by  the relations B x =  
8~r2u~,. . .  etc. 
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In  equation (1), by  writing for the isotropic par t  
not the scattering from an atom at rest but  from an 
atom having a suitable isotropic temperature factor B, 
we get 

f(~, ~, $)= fB(S) exp [-- (ABx~2+ ABy~'I2+ ABz~2)/4], 
(2) 

where B is chosen to be less than or equal to the 
smallest of B=, By, Bz so tha t  /1Bx, ABy, ABz are all 
positive. The electron-density distribution which gives 
the scattering corresponding to equation (2) is the 
convolution of the Fourier transforms of the two terms 
on the right hand side of equation (2). Thus, 

@an,,o(r,) = I l l  @~o(r + rl) .8 (~3/ AB= /IByAB,)½ 
T 

x exp - 4 ~  ~ + ~ + ~ dxdydz, (3/ 

where @~o is the electron density corresponding to an 
atom which has isotropic temperature factor B, and the 
integration extends over the whole of real space. In  
this ease the Gaussian distribution function represents 
only the difference between the anisotropic thermal 
motion and. the assumed isotropic par t ;  hence the 
distribution is concentrated near the centre of the 
atom, and a further simplification in the range of 
practical importance becomes justifiable. This is done 
by replacing the sharp Gaussian distribution 

2 (~/AB=)½ exp [ -  4~2x~/ABx] 

by the two Dirac functions {½0(x+o'x)+½d(x-o'x)}, 
of half weight each, with their peaks symmetrically 
placed about the atom centre and at  distances ± ~x 
from it, where az is the s tandard deviation of the 
distribution. Applying similar approximations along 
y and z we get 

@an,so(r,) = i l l  [s~@B°(r +rx)] 
r 

x ($(x± (rx)&(y± (ry)(i(z± (r,)dxdydz, (4) 

where ax= [ABx/(8u2)] ½, . . .  etc. With the usual def- 
inition of 5, the convolution in equation (4) reduces 
to repetition of the isotropic distribution 1 B s @iso(r) a t  
the eight points (± ax, ± ay, ± az). 

Taking the separation (Ax) equal to ax is good 
enough to a first degree of approximation, but  in actual 
fact the value o f / I x  which should be chosen depends 
on the anisotropy parameter  2Bx and the range of 
where good fit between the two representations is 
most important.  Also, since a scattering-factor curve 
having isotropic temperature factor B falls off fairly 
rapidly for increasing values of ~, therefore good fit 
is most important  in the range of small values of 
~(ABx)½. By trial, we have found tha t  within the prac- 
tical range of observation and for average B values, 
the best fit between the correct and approximate 

representations of the anisotropy corresponds to a 
separation 

Ax_~0-96a= or 0.108(AB=)½J~, (5) 

where AB~ is in /~2, and similarly for the separations 
Ay and Az. 

Applicat ion of m e t h o d  to p rac t i ca l  cases  

In order to illustrate the accuracy of such a represen- 
tat ion consider the two-dimensional case of an aniso- 
tropically vibrating atom with By = B, Bx = B + A Bx. 
This atom is represented by two atoms of half wcight 
each and isotropic thermal parameter B, placed sym- 
metrically about the atom centre and distant ( + Ax, O) 
from it, where Ax corresponds to ABx as given by 
equation (5). The scattering from such a representation 
in the ~ direction in reciprocal space is given by 

f l (~ )=f0 (~ )  exp [ -B~2/4]  cos 2 7 ~ A x ,  (6) 

whereas the correct factor is given by 

f~(~)=f0(~) exp [ -B~2/4]  exp [-ABx~2/4]. (7) 

Thus the present method is equivalent to representing 
an exponential function by a cosine function for small 
values of the argument. The validity of this represen- 
tat ion for all practical ranges is seen from Fig. 1 
which gives the graphs of the two functions 
exp -/1B~e2/4 and cos 2jr~Ax against (~(JB~)½). For 
the practical case with A B =  1 /~2 the discrepancy 
between the two representations within the Cu K s  
sphere of reflection (which corresponds to an outside 
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Fig. 1. Graphs of (1) the  exact  expression exp (--/IBx~2/4), 
(2) the ~-function approximat ion  cos 2 ~ z l x ,  (3) the  ex- 
pression exp (--2/1Bx~2/4) for an assumed isotropie par t  of 
the  t empera tu re  factor  equal to twice the  anisotropie 
component .  All graphs are drawn against  ~(ABx)½, where 

= 2 sin 0/4. 
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range of ~(/1Bx)½=l'3) is better than 2%. Further- 
more, the scattering of the atom is reduced primarily 
by the isotropic part of the thermal vibration. The fall 
due to an isotropic temperature factor which is double 
the anisotropic part ziBz is shown in curve (3) of Fig. 1. 
The combined factor to be applied to each f0(~) value 
for different ~ (or 2 sin 0/2) in the highly anisotropic 
case of B= 2 /~  and AIB= 1 ~2 as calculated using 
expressions (6) and (7) are given in Fig. 2 as graphs 
(1) and (2) respectively. I t  is seen that  the agreement 
between the two curves is very good throughout the 
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Fig. 2. Graphs of the combined functions corresponding to 
B----2.0 /~2 and AIB----1.0 /~ as calculated (1) by the correct 
expression, (2) by the ~-function approximation for the 
anisotropic part, drawn against ~. 

region where the scattering is appreciable. Similarly 
good agreement can be obtained in other cases, say 
with B = 4 ~ and AIB = 2 /~2 merely by changing the 
scale of Fig. 2. Further, it may be pointed out that  
anisotropies so high as to have ZlB = ½B are rare and 

represent the largest value of the anisotropies usually 
encountered. In this case, the reason why a value of 
/ix < ax gives a better overall fit between the functions 
cos 2~Z]x  and exp (-zJBz~2/4) of equations (6) and 
(7) respectively, can be seen by considering their series 
expansions. 

Spec ia l  c a s e s  

I t  is seen from equation (4) that  in the general case, 
an atom having an anisotropic thermal vibration can 
be represented by a constellation of eight atoms of 

weight each at the eight points ( _+ Ax, _+ Ay, +_ Az), 
symmetrically placed about the centre of the atom. 
However, further simplification can always be obtained 
by choosing the isotropic temperature factor equal to 
the smallest of Bx, By, Be, say B=Bx. In this case, 
only four atoms of ¼ weight each at (0, _+ ely, _+ Az) 
are required for representation of the anisotropic atom. 
Further simplification is possible in the case when the 
vibration tensor is an ellipsoid of revolution about 
the major axis, say z, so that  Bx=By <Be ; and only 
two atoms of half weight each at (0, 0, _+ Az) are 
enough for the representation. However, this last 
simplification cannot be applied in the case when the 
ellipsoid is obtained by revolution along the minor axis 
so that  Bx=By>B~, say, then since /IB has to be 
positive the four-fold repetition is necessary to give 
a correct representation. 

Thus, in the general case the anisotropically vibrat- 
ing atom can be represented by four repetitions of iso- 
tropic atoms of ¼ weight each and this number is 
further reduced to two of ½ weight each in the favour- 
able case where the vibration ellipsoid is an ellipsoid 
of revolution obtained by rotation around the major 
axis. 
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